サイトアイコン IT NEWS

機械学習運用基盤(MLOps)スタートアップの話をよく聞くようになってきた

スタートアップとマーケットの週刊ニュースレター、The TechCrunch Exchangeへようこそ。

ああ、先週の金曜(米国時間11月19日)の午後はちょっと苦労していた。米国にいない人には、ちょっと説明が難しい。簡単に言えば、先週の終わりになって、私たちの警察と司法のシステムのある種の欠陥が明るみに出たのだ(訳注:警察のヘリコプターから撮影されたとみられる大量の監視映像が米国で流出した)。というわけで、今回のExchangeニュースレターは予定よりも短くなる。

DevOps(デブオプス)の市場は多忙で、資金も豊富だ。例えば先日はOpslyft(オプスリフト)の話を聞いた。インドと米国にまたがるこの企業は、ソフトウェアを作成する際のポストデプロイメント側のツールをまとめた統合DevOpsサービスを開発している。すばらしい企業なので、もし資本調達を発表したら、もっと時間をかけて記事を書くことになるだろう。最近の記憶に残る別の例を挙げるなら、先日公開されたプレデプロイメントDevOpsサービスであるGitLab(ギットラボ)がある。

つまり、大小を問わずのハイテク企業はDevOpsツールを構築しているということだ。そして、機械学習運用基盤(MLOps、エムエルオプス)の市場は、大きな兄弟(DevOps)と同じように急速に成長し始めている。TechCrunchは、MLOpsスタートアップのComet(コメット)が今週資金調達したことを記事にしたが、これを読んでThe Exchangeは、MLOpsスタートアップの別の資金調達イベントであるWeights & Biases(ウエイツ&バイアス)のラウンド、を取り上げたことを思い出した。

関連記事:企業の機械学習利用の空隙を満たすMLOpsのスタートアップCometが約57億円調達

こんな話を持ち出したのは、先日私たちがSapphire VenturesのJai Das(ジェイ・ダス)氏にインタビューを行い、AIによる資金調達のトレンドについての情報を収集したからだ。その対話の中で、私はAIOps(エーアイオプス)のアイデアを持ち出し、それが私たちが注目すべき第3の「Ops」カテゴリーになるのではないかと口にした。しかし、ダス氏によれば「MLOpsは基本的にAIOpsです」ということなので、2つの大きなカテゴリーに考え方をほぼ限定することができる。

とはいえ、AI(人工知能)とML(機械学習)は正確には同じものではない(ここであまり争うつもりはない、大まかな話なので)よって、2つの異なるタイプの仕事が、同じソフトウェアの中に収まるかどうかは興味深いところだ。

さらにAIについて

AIのテーマに沿って、今回はAI市場についてもう少し触れてみよう。Anna(アンナ)記者が、世界の人工知能投資の動向を論じた最近のエントリーを踏まえて、メモを用意した。彼女は、今日のAIファンドがどこに使われているのか、また「AI」という呼び名にふさわしいものの定義が変わることで、スタートアップ活動のための資金量がどのように増えていくのかについて考えている。

地理的な格差が私たちの注意を引いたが、AIの定義や応用が広がれば、資金はより均等に分配されると考えている。例えば第3四半期に新たにラテンアメリカのAIユニコーンに選ばれたのは、フードテックのNotCo(ノットコ)とデジタルIDを提供するUnico(ユニコ)の2社だった、またメキシコの融資会社Kueski(キュースキー)も大規模なラウンドを行った。私たちはこれをフィンテックと呼んでいたが、これもまたAIを活用したも企業だ。それがAIの新たな現実だとすれば、ラテンアメリカやアフリカなど、世界のあらゆる場所で、AIを活用して現実の問題に取り組むスタートアップに資金が集まるようになるのも不思議ではない。

来週はカナダにお住まいの方にはぜひ読んでいただきたいものがあるのだが、今回のAI記事の締めくくりとして前回のAI記事には少し遅れてしまったPoint72 VenturesのSri Chandrasekar(スリ・チャンドラセカール)氏からの回答をご紹介しよう。

AIに特化したスタートアップの経済性についての質問に答えて、投資家であるチャンドラセカール氏は以下のようなコメントを寄せてきた。

最近のAIへの関心のほとんどは、大規模なラウンドを調達している企業たちの収益の成長によってもたらされているのだと思います。しかし、その増収の背景にあるのは、商品の需要の高さと労働参加率の低さという極めてシンプルなものなのです。これは、Point72 Venturesのディープテック・ポートフォリオ全体に見られることです。AIは人間を補強して生産性を向上させ、場合によっては自動化に適した作業を人間に代わって行い、人間はより付加価値の高い戦略的な活動に専念できるようになります。これまでは、こうした自動化を導入するための労力が大きかったのですが、(人材不足によって)カスタマーサービスのリクエストに対応する人や受付を担当する人を雇うことができなくなると、自動化が俄然意味を持ち始めます。

最近私たちは、マクロ環境がスタートアップにどのような影響を与えるかについて、多くのことを学んでいる。インフレの進行でインシュアテックの利益が損なわれたり、「the Great Resignation(大退職時代)」が進んだりすることで、AIソフトウェアの需要が高まっているのだ。心に留めておきたい。

関連記事:暗号資産ゲームは短期的にどれだけの資金を吸収できるだろうか

その他のあれこれ

画像クレジット:Nigel Sussman

原文へ

(文: Alex Wilhelm、翻訳:sako)

モバイルバージョンを終了